
KubeHound: Identifying attack paths in
Kubernetes clusters at scale with no
hustle

Julien Terriac
Team Lead, Adversary Simulation Engineering (ASE)
Repented pentester

$ cat /etc/group

Edouard Schweisguth
Senior Security Engineer, Adversary Simulation Engineering (ASE)
Repented pentester

Agenda

3

01 The Problem Space

02 Introduction and setup

03 Introduction to graph

04 KubeHound in a nutshell

05 KubeHound in Action

06 KubeHound DSL

07

08 K8s/Kubehound RBAC

Gremlin introduction

The Problem Space
Scale, complexity and quantifying security

Vulnerability Context

5

FINDING: Container escape
Web application exposed to the internet
running inside a container with privileged:
true

• Internet facing

• Privilege is not necessary

• Limited auditing

FINDING: Container escape
Control plane DNS container running with
CAP_SYS_MODULE enabled

• Internal service

• Restricted, audited access

• Privilege is necessary

Manual processing takes time

6

Can you do it at scale ?

Let’s play a game …

14 container escapes are present in my kubernetes cluster.

32 privilege escalations through RBAC issues.

34 escape to host through weak vulnerables volumes configurations.

72 lateral movement between containers (Share Process Namespace for
instance)

Let’s assume we have a cluster with …

7

8

? 🤷 ?
How secure is this cluster ?
(on scale 1 to 10)

9

Corporate Vice President, Security Fellow, Microsoft Security
Research

John Lambert

 April 26, 2015

Defenders think in lists,
attackers think in graphs; as
long as this is true, attackers
win.

“

“

10

Need to Quantify a Security
Posture

How many vulnerabilities ?

How many misconfiguration ?

How many outdated/CVE ?

Public facing ?

Can have the most significant
impact on my cluster security ?

Lead to a critical attack path ?

List approach

The old way

Graph approach

The new way

11

Quantifying Security Posture

12

If you cannot measure it, you cannot improve it

Current state
What is the shortest exploitable path between an internet facing service and cluster
admin?

What percentage of internet-facing services have an exploitable path to cluster
admin?

Measuring Change
What type of control would cut off the largest number of attack paths in your cluster?

By what percentage did the introduction of a security control reduce the attack
surface in your environment?

Introduction and setup
Kubernetes, graphs and their combined power

14

Kubernetes 101

Kubernetes
Open-source container orchestration platform

• Automates the deployment, scaling, and
management of containerized applications

• High availability and auto-scaling

Container
Lightweight, standalone, and executable software
packages

• Encapsulate an application and its dependencies

• Sandboxed execution

Pod
Smallest deployable unit in Kubernetes

• Contain one or more containers that share the same
network namespace and storage volumes

• Designed to run a single instance of an application
and are scheduled to nodes

Node
Worker machines within a Kubernetes cluster

• Host pods and provide the necessary resources
(CPU, memory, storage) for running containers

• Grouped together in a cluster

15

Kubernetes 101

16

Kubernetes Security 101

Container escape
Exploit a container misconfiguration to gain node
access

• Multiple avenues

• Very powerful - grants access to all node resources

Kubernetes Identity
Define service accounts (robot), users (humans) and
groups (both)

• Service accounts linked to pods

Kubernetes Roles
Set of permissions granted to an identity on specific
resources

• Addition only (no deny)

• Certain permissions are very powerful - secrets/list,
pods/exec, etc.

Mounted Volumes
Node or “projected” directories can be mounted into
the container

• Mounting the wrong directory = container escape

• Projected directories contain service account
tokens

17

Kubernetes Security 101

18

Let’s exploit some of them to
understand how it is being

done …

Setup the environment

19

Checkout kubehound repository from github, to use our dev environment
in a kind cluster.

● make local-cluster-deploy

● Install the following packages: kubectl, make, kind and docker.io

● git clone https://github.com/DataDog/kubehound.git && cd
kubehound

Play in our sandbox

https://github.com/DataDog/kubehound.git

Configurating kind cluster

20

Setup the KUBECONFIG var to point to the kind kube-config file. When
creating the local cluster a specific kubeconfig is generated (not
overwriting your local one).

● Checking the pods deployed: kubectl get pods

● export KUBECONFIG=./test/setup/.kube-config

● Checking the clustername: kubectl config current-context

Play in our sandbox

Connecting to a pod

21

In order to test the attacks, we will assume breach of the containers.

● Checking the pods deployed: kubectl get pods or k9s.

● kubectl exec -it <pod_name> -- bash

● Can use k9s (https://github.com/derailed/k9s). Great tool made by
the community - provides a terminal UI to interact with k8s cluster.

Play in our sandbox

https://github.com/derailed/k9s

22

Raw k8s cmd
Execute a shell command in the nsenter-pod
List all the volumes present in the k8s cluster
List all containers images in all namespaces

23

Container escape via the nsenter
built-in linux program that allows
executing a binary into another
namespace.

CE_NSENTER
Exploitation

nsenter is a tool that allows us to enter the namespaces of one
or more other processes and then executes a specified
program.

So to escape from a container and access the pod you just run,
you need to target running on the host as root (PID of 1 is
running the init for the host) ask for all the namespaces:

$ nsenter --target 1 --mount --uts --ipc --net
--pid -- bash

CONTAINER_ESCAPE

Prerequisite/Check

There is no straightforward way to detect if
hostPID is activated from a container. The only
way is to detect host program running from a pod.
The most common way is to look for the kubelet
binary running:

$ ps -ef | grep kubelet

No disruptionContainer escape Easy

24

An attacker with sufficient
permissions can execute arbitrary
commands inside the container using
the kubectl exec command.

POD_EXEC
Exploitation

Easiest way is to use kubectl, you can pull it via (curl, wget),
from the pod for instance:
$ curl -LO "https://dl.k8s.io/release/$(curl -L
-s
https://dl.k8s.io/release/stable.txt)/bin/linux/amd
64/kubectl"

Note: Replace by arm64 for ARM processor image.

Then, on the pod, execute kubectl like so:

$ kubectl exec -it control-pod -it -- /bin/bash

It’ll automatically pull the correct roles for you. For this new
image you can access new resources, gain more rights, …

POD_EXEC

Prerequisite/Check

Ability to interrogate the K8s API with a role
allowing exec access to pods which have the
binary you want to execute (e.g. /bin/bash)
available.

$ kubectl auth can-i --list

No disruptionLateral
movement Easy

25

With the correct privileges an attacker
can use the Kubernetes API to modify
certain properties of an existing pod
and achieve code execution within the
pod

POD_PATCH
Exploitation

Define a patch file
$ echo 'spec:
 containers:
 - name: control-pod
 image: kalilinux/kali-rolling:latest' >
test.yaml

Apply the patch:

$ /tmp/k patch pod control-pod --patch-file
test.yaml

See the result:

$ /tmp/k describe pods/control-pod

Note: do not do it on a production environment as you are
changing the current image running (side effect will happen)

POD_PATCH

Prerequisite/Check

Ability to interrogate the K8s API with a role
allowing pod patch access.

$ kubectl auth can-i --list

DisruptionLateral
movement Medium

26

Pods represent one or more
containers with shared storage and
network resources. Optionally,
containers within the same pod can
elect to share a process namespace
with a flag in the pod spec.

SHARE_PS_NAMESPACE
Exploitation

Assume breach, jump on a host that has
“shareProcessNamespace” set to true:

$ kubectl exec -it sharedps-pod1 /bin/bash

See the processes between containers:

$ ps ax -H

Read the .bashrc file from the other container:

$ cat /proc/33/root/home/ubuntu/.bashrc

With this vulnerability you can access the storage of another
container which allow you to access new resources, gain more
rights, …

SHARE_PS_NAMESPACE

Prerequisite/Check

Ability to interrogate the K8s API with a role
allowing pod patch access.

$ kubectl get pod/sharedps-pod1 -o yaml |
grep "shareProcessNamespace: true$"

DisruptionLateral
movement Easy

Introduction to graph
Kubernetes, graphs and their combined power

28

Graph Theory 101

Graph
A data type to represent complex, relationships
between objects.

• In KubeHound: a Kubernetes cluster at a specific
time

Vertex
The fundamental unit of which graphs are formed
(also known as "node").

• In KubeHound: containers, pods, endpoints, nodes,
permissionsets, identity and volumes

Edge
A connection between vertices (also known as
"relationship").

• Automates In KubeHound: a container escape (e.g
CE_MODULE_LOAD) connects a container and a
node

Path
A sequence of edges which joins a sequence of
vertices.

• In KubeHound: a sequence of attacks from a service
endpoint to a cluster admin token

Taxonomy is always important

Graph Theory 101

29

Sample graph

30

KubeHound 101

Entity
An abstract representation of a Kubernetes
component that form the vertices of the graph.

• For instance: PermissionSet is an abstract of Role
and RoleBinding.

Critical Asset
An entity in KubeHound whose compromise would
result in cluster admin (or equivalent) level access

• For now it only covers a subset of roles which are
not namespaced (like cluster-admin or
kubeadm:get-nodes).

Critical Path
A set of connected vertices in the graph that
terminates at a critical asset.

• This is the treasure map for an attacker to
compromise a Kubernetes cluster.

Attacks
All edges in the KubeHound graph represent attacks
with a net "improvement" in an attacker's position or a
lateral movement opportunity.

• For instance, an assume role is considered as an
attack.

Taxonomy is always important

Attack Graphs

31

Sample graph

Attack Graphs

32

Sample graph

KubeHound in a nutshell
Graph theory + Offensive Security = KubeHound

34

KubeHound in a nutshell

Attack Graph
KubeHound creates a graph of attack paths in a Kubernetes
cluster, allowing you to identify direct and multi-hop routes an
attacker is able to take, visually or through graph queries.

Runtime Calculation
If any entity is connected to a critical asset in our attack graph - a
compromise results in complete control of the cluster.

Snapshot
KubeHound analyze a snapshot of your Kubernetes cluster. It
dumps all the assets needed to create an “image” of it.

The best defense is a good offense

KubeHound in a nutshell
A diagram is worth a thousand words

35

KubeHound in a nutshell

36

Pinpoint where the security failures are.

KubeHound in Action
Capability showcase

38

Auto mode (new)

Only one binary and one command
For local usage just do ./kubehound and enjoy the result on 127.0.0.1:8888

Who does not like auto-pilot ?

Minimum requirements

39

8gb

10gb

3cpu

8888

To gain performance we are using memory only backend for
Janusgraph. So we need RAM

With Janusgraph, it needs some spaces to build the graph on
disk. Hardcoded checks are being done by the image.

Some of the queries will need some CPU to be processed.

Port 8888 needs to be free to run the Jupyter Notebook frontend.

40

Asynchronous usage

Snapshot a cluster and rehydrate it locally easily
You can create a snapshot with kubehound dump local/remote.

Reload the data using kubehound ingest local/remote.

Home sweet home

41

1st blood
Run synchronously

Dump the config of the kind cluster
Ingest the dumped config of the kind cluster

KubeHound DSL
Basic usecases

43

User Experience (UX)

… but really hard to master
g.V().hasLabel("Pod").dedup().by("name")

.repeat(outE().inV().simplePath()).until(

hasLabel("Container").or().loops().is(10).or().
has("critical", true)

).hasLabel("Container").path().tail(local,1).va
lues("name").dedup()

A really powerful language …
All k8s data is being ingested into Janusgraph which is powered
by Gremlin a powerful query language.

g.V().hasLabel("Pod").dedup().by("name")

Gremlin a tough query language

KubeHound UI

We tried to avoid creating a fancy/Minority report style UI. Focus
most of our energy on backend and performance, because we are
not frontend developers.

Frontend development is hard, really hard …

44

Why did frontend development become so complicated?

KubeHound v1.3KubeHound v1.0

Pros:
● Share results
● As a Service frontend
● Highly customizable
● Prebuilt queries through

notebooks

Cons:
● Not free anymore
● Lack of prebuilt queries
● Developers oriented
● Not available as a

Service (rich client only)

Getting started

45

Setting the connection variable to KubeHound graph db (mandatory). No
active connection is made on this step (will be made on first query).

Getting started

46

Setting the visualisation aspect of the graph rendering. This step is also
mandatory.

Getting started

47

To run a query you need to start with the %%gremlin magic

Getting started

48

To show a graph you need to add some option to make the graph more
readable %%gremlin -d class -g critical -le 50 -p inv,oute

Need to have a path

Process the results

49

Raw information in the console tab (download CSV or XSLX). The search
go through all the fields in the results.

Process the results

50

Graph view to navigate through the results (can access properties info
through the burger button when a vertice is selected).

51

1st KH
queries

Display all the vertices in a graph
Count the attacks present in the k8s cluster

Constructing requests

52

Every vertices has a label associated which describes the type of the k8s
resources (can be accessed through Kubehound DSL).

Constructing requests

53

The first step is to identify the entry point of your graph. The usual way is
to start a specific type of resources you want to check.

Constructing requests

54

Each gremlin vertices has a Label and properties attached to it.

Label

properties

values

Constructing requests

55

For each type you can select specific resources based on its name (one or
many). All resources have a property called name.

Constructing requests

56

For each type you can select specific resources based on its name (one or
many). To get the exhaustive list you can use .properties()

Constructing requests

57

Most important common properties present for all KH resources.

Cluster where the resources has been extracted

runID generated during the collecting process (important when multiple
ingestion has been made)
App associated with the resource (can be used to regroup resources of
same “kind” together)
Namespace for the resource (if namespaced resource). Can be useful to
“whitelist” some of them.

Boolean to tag a resource if namespaced

Kubehound resources (V)

58

Most important properties values for Volumes

mountPath

readOnly

sourcePath

type

The path of the volume in the container
filesystem

Whether the volume has been mounted with
readonly access

The path of the volume in the host (i.e
node) filesystem

Type of volume mount (host/projected/etc)

Kubehound resources (V)

59

(1/2) Most important properties values for Containers

hostNetwork Whether the container can access the
host’s network namespace

privesc Whether the container can gain more
privileges than its parent process

image Docker the image run by the container

hostPid Whether the container can access the
host’s PID namespace

Kubehound resources (V)

60

(2/2) Most important properties values for Containers

runAsUser The user account the container is running
under e.g 0 for root

hostIpc Whether the container can access the
host’s IPC namespace

privileged Whether the container is run in privileged
mode

Kubehound resources (V)

61

Most important properties values for Pods

shareProces
sNamespace

whether all the containers in the pod
share a process namespace

serviceAcco
unt

The name of the serviceaccount used to run
this pod

Kubehound resources (V)

62

Most important properties values for Identities

type Type of identity (user, serviceaccount,
group)

Kubehound resources (V)

63

(1/2) Most important properties values for Endpoints

serviceEndp
oint

Name of the service if the endpoint is
exposed outside the cluster via an
endpoint slice

serviceDns FQDN of the service if the endpoint is
exposed outside the cluster via an
endpoint slice

addresses Array of addresses exposing the endpoint

Kubehound resources (V)

64

(2/2) Most important properties values for Endpoints

port Exposed port of the endpoint

portName Name of the exposed port

exposure Enum value describing the level of
exposure of the endpoint
- 3: External DNS API endpoint
- 2/1:Kubernetes endpoint exposed outside

the cluster
- 0: Container port exposed to cluster

Constructing requests

65

To select resources with specific properties, use the .has() and not()

66

List k8s r
List all images presented in the k8s cluster

List all the port and ip addresses being exposed outside of
the k8s cluster

List all the containers with privileged mod which are not in
the default namespace

Gremlin introduction
Basic use cases

Access Properties - Gremlin

68

There are 4 way to access properties of the vertices. Some of them will
require to unfold then to display them in a nicer way in the table output.

properties() get all specified properties for the
current element

values() get all specified property values for the
current element

valueMap()

elementMap()

get all specified property values for the
current element as a map
can specify a list of specific element
wanted

Aggregations - Gremlin

69

Group results by key and value. This allows us to display some important
value.

group() group([key]).by(keySelector).by(valueSelector)

unfold() unfold the incoming list and continue
processing each element individually

Aggregations - Gremlin

70

Group and Count results by key. This gets metrics and KPI around k8s
resources.

groupCount() groupCount().by(keySelector)

Aggregations - Gremlin

71

When using text value you can do some pattern matching using
TextP.<cmd>. Note: this can slows down a lot the query (not using index)

containing() notContaning()

startingWith() notStartingWith()

endingWith() notEndingWith()

Other operators - Gremlin

72

Classic operator that are useful to scope items of the research.

limit() Limit the number of results

or() Classic OR operator, useful when
selecting resources by properties

dedup() Will remove any duplicate on the object
output (needs to scope to specific
properties to make it work).

Other operators - Gremlin

73

Classic operator that are useful to scope items of the research.

Other operators - Gremlin

74

The step-modulator by() can be added in addition to other step to
modulate the results. It can be added one or multiple times.

by() If a step is able to accept functions,
comparators, etc. then by() is the means by which
they are added (like group() step)

Other operators - Gremlin

75

There are some defined value to access specific “properties” of the
vertices.

label() It takes an Element and extracts its
label from it.

key() It takes a Property and extracts the key
from it.

value() It takes a Property and extracts the
value from it.

Other operators - Gremlin

76

There are some defined value to access specific “properties” of the
vertices.

77

List k8s r
Count all the property names occurrences for all vertices

Count how many users and services accounts
Enumerate how attacks are present in the cluster

K8s/Kubehound RBAC
Who does love RBAC stuff ?

RBAC in k8s

79

Namespaces provide a mechanism for isolating groups of resources
within a single cluster. Names of resources need to be unique within a
namespace, but not across namespaces.

Namespace

Project Compartmentalization

Sandbox Development

Access and Permissions

Resource Control

Namespace-based scoping
is applicable only for
namespaced objects and
not for cluster-wide
objects

RBAC in k8s

80

Role allows verbs (get, list, create, delete, … *) on specific k8s resources
(pod, pods/exec, rolebindings, … *). This resources can be anything (you
can create your own custom resources in you want)

Roles

Role are limited to a
specific namespace.

Cluster Role is not attached
to any namespace, so the role
can be used to access k8s
resources cluster wide.

RBAC in k8s

81

RoleBinding allows to allocate a role to an entities (user, group or service
account). So, it defines who has the permission to perform certain actions
on resources within a specific namespace

RoleBinding

RoleBiding are limited to a
specific namespace.

Cluster RoleBinding is not
attached to any namespace, so
it can only refer cluster
roles.

RBAC in k8s

82

4 differents usecases with RBAC

RBAC matrix

Allowing access to k8s
resources on a specific
namespace

Can not link a CRB and a
Role.

RBAC in k8s

83

4 differents usecases with RBAC

RBAC matrix

Allowing access to k8s
resources on a specific
namespace even with Cluster
Role

Allowing access on cluster
wide k8s resources

RBAC in k8s

84

Roles and role bindings must exist in the same namespace.

Cluster role bindings can not reference roles.

Role bindings can link cluster roles, but they only grant access to the
namespace of the role binding

Cluster role bindings link accounts to cluster roles and grant access
across all resources.

In a nutshell

RBAC in kubehound

85

A permission set is the combination of role and role binding. The reason is
that RoleBinding can “downgrade” the scope of a cluster role.

PermissionSets

PermissionSet represent the RBAC
access in KubeHound

RBAC in kubehound

86

The details of the RBAC is flatten into the attribute “rules” of the
permission set. It describes the verbs/resources/namespace.

Rules in PermissionSets

R() K8s resources allowed to access

N() Namespace scope for the k8s resources

V() Verbs allowed to be used on the k8s resources

API() API group (empty means core API group)

API()::R(endpoints,services)::N()::V(list,watch)

RBAC in kubehound

87

An PermissionSet with significant rights that would allow an attack to
compromise the entire cluster like cluster-admin.

Critical Assets

Attack paths
Let’s build some attack path

Critical Path

89

Now that we need how to select specific k8s resources, we want to see
how to build actual attack paths.

Building path …

The goal is start at a specific resources and traverse to a critical asset
(PermissionSet with high privileges).

criticalPath() Will traverse all the edges until it
reaches a critical assets or reach a
maximum number of hops

Default maxHops = 10

Critical Path

90

When building path or criticalPaths, always add a limit otherwise there is
high chances it will timeout with no result.

Building path …

5k to 10k It does not make sense to display
more than 10k attack path. It will
unmanageable anyway by a human …

Privilege escalation

91

Another thing an attack is looking for are container escape to node.
Gaining access to a node is usually the first step toward full compromise.

Building path …

escapes() Starts a traversal from container to node
and optionally allows filtering of those
vertices on the "nodeNames" property.

Lateral movement possibilities

92

Also knowing what you can do with a specific k8s resources can be
useful. Attacks() show all the 1-hop possibility.

Building path …

attacks() From a Vertex traverse immediate edges to
display the next set of possible attacks and
targets

93

List attacks
List all critical path starting from publicly exposed

endpoints
List all containers escape from a specific container

List all container escape to the control plane

Gremlin Expert
What we understood :sweat_smile:

Under the hood

95

When building a path you need to access Edges and Vertices to know
when to stop the path.

Building path …

inV() get all incoming vertices

outE() get all outgoing edges

inE() get all incoming edges

outV() get all outgoing vertices

out() get all adjacent vertices connected by outgoing
edges

Can be
filtered
with labels

Under the hood

96

Example using out*(), building the attacks() DSL function.

Building path …

From the container you get all outgoing edges

From the outgoing you get the vertices

kh.containers().outE().inV().path()

You build a path between the 2

Or just
attacks()
:)

Under the hood

97

To build a path you need to iterate through the element and checks at
every step if you want to stop or not.

Building path …

repeat() Define the action you want to iterate

until() Set the condition for the loop

simplePa
th()

Create a path with avoiding cyclic loop that
will break the graph

loops() Indicate the number of iteration

Under the hood

98

To build a path you need to iterate through the element and checks at
every step if you want to stop or not.

Building path …

Root Element

99

To extract the first element of a path, the local function allows to scope to
the first resources.

Building path …

local() Its purpose is to execute a child traversal
on a single element within the stream.

100

Non DSL
attacks

List all attacks path from endpoints to node
List all endpoints properties by port with serviceEndpoint

and IP addresses that lead to a critical path

Scripting time
Automate automate automate

Gremlin Python

102

Kubehound expose the raw Janusgraph endpoint so you can automate
your own stuff.

Python to the rescue

gremlin_python

KPI

103

As mentioned there is no current “real frontend” for Kubehound but we
develop a small PoC for a dashboard in python with Panel lib.

Because leadership love KPI

104

Demo
Security metrics calculation

Real Use Cases
Prebuilt notebooks shipped

106

Red team
Initial Recon

Attack Path Analysis

107

Blue Team
Compromised Credentials
Compromised Container

Focus on container escapes
Shortest attack paths

Blast radius evaluation

108

KPI
High Level Metrics

Exposed asset analysis
Threat Modelling

109

Thank
you

We are recruiting for the team :)

